
Fine-grained fallacy detection
with human label variation
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Either used intentionally (for persuading) or unintentionally
§ Not only logical: also structural, from diversion, due to language use [1]

§ Di!cult to spot: closely follow the patterns of valid arguments [2]

§ Impactful: can mislead a wide audience → spread of misinformation

Fallacies
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– Aristotle
Arguments that seem valid but are not

Alice got the flu after the influenza vaccine. Vaccines are really useless.
Hasty generalization

[1] Tindale, 2007. “Fallacies and Argument Appraisal”. Critical Reasoning and Argumentation; CUP.
[2] Musi et al., 2022. “Developing Fake News Immunity: Fallacies as Misinformation Tri"ers During the Pandemic”. OJCMT.

Aristotle icons created by Freepik - Flaticon

https://www.cambridge.org/core/books/fallacies-and-argument-appraisal/201129A0FFA542571A10622B493D93A4
https://www.ojcmt.net/article/developing-fake-news-immunity-fallacies-as-misinformation-triggers-during-the-pandemic-12083
https://www.flaticon.com/free-icons/aristotle


NLP can support this, but current datasets have some limitations:
§ Coarse-grained annotations (e.g., text-level), few fallacy types, or few annotations

§ One fallacy for each text or no overlaps between fallacies in the span-level case

§ Single ground truth: genuine disagreement is not taken into account!

Fallacy detection
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Recognizing fallacies in everyday argumentation plays 
a key role in developing individuals' critical thinking skills, 
contributing to mitigate faulty argumentation at its root

Why is it useful?



Dataset for !ne-grained fallacy detection with human label variation

§ Focuses on Italian social media posts

FAINA dataset
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§ Focuses on Italian social media posts

§ Embraces multiple plausible 
answers and natural disagreement
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Dataset for fine-grained fallacy detection with human label variation

§ Focuses on Italian social media posts

§ Embraces multiple plausible 
answers and natural disagreement

§ Large inventory of 20 fallacy types

§ Fine-grained annotation at the 
span-level with potential overlaps

FAINA dataset

3

Studio americano: la mutazione si diffonde 

quattro volte più velocemente, ma i ! servono!

"

Appeal to authority  •AA Doubt  •DO Evading the burden of proofEP
Hasty generalization  • HG Vagueness  •  …  (20 fallacy types)VA

VAAA EP

HG

Studio americano: la mutazione si diffonde 

quattro volte più velocemente, ma i ! servono
VAAA

DO

en: American study: mutation spreads four times faster, but ! are needed



Public discourse on Twitter minimizing temporal & topic biases
§ Multi-year: ⌛ 4-year time frame (2019-01 — 2022-12)

§ Multi-topic: " migration, # climate change, and $ public health

§ Manually-curated list of 436 neutral keywords derived from trustable glossaries and manuals

Posts with highest impact to society minimizing author bias
§ Top-k posts (k=10) by like+retweet [3] for each month/topic

§ Resample posts by the same authors a"er their most impactful one

FAINA dataset: data collection and sampling

[3] Nakov et al., 2022. “Overview of the CLEF-2022 CheckThat! Lab Task 1 on Identifying Relevant Claims in Tweets”. CLEF.

1,440 posts
58,490 tokens

https://ceur-ws.org/Vol-3180/paper-28.pdf


Intrisically di"cult task: fallacy nuances, inventory, granularity, overlaps
Crowdsourcing is not suitable in this context – discussion is paramount!

§ 2 expert annotators with di#erent sociodemographics and background

§ 5 rounds of annotation/discussion (resolve errors, keep genuine disagreement)

FAINA dataset: (manual) data annotation

Minimize annotation errors whilst keeping signals of human label variation
Annotation goal

380
person-hours



We use γ and γcat [4, 5] measures
for span-level labels with overlaps

γ = 0.6240 γcat = 0.5445

IAA over rounds and before/after discussions
§ Discussions are necessary for such a complex task

FAINA dataset: inter-annotator agreement
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[4] Mathet et al., 2015. “#e Unified and Holistic Method Gamma (γ) for Inter-Annotator Agreement Measure and Alignment”. CL.
[5] Mathet, 2017. “#e Agreement Measure γcat a Complement to γ Focused on Categorization of a Continuum”. CL.

https://aclanthology.org/J15-3003/
https://aclanthology.org/J17-3006/
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We use γ and γcat [4, 5] measures
for span-level labels with overlaps

γ = 0.6240 γcat = 0.5445

IAA over rounds and before/after discussions
§ Discussions are necessary for such a complex task

§ Disagreement can be resolved only partially

§ Identifying fallacy spans is the main bottleneck for IAA

FAINA dataset: inter-annotator agreement
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§ 11,064 spans – 5,532±253 spans/annotator

§ Avg token length of 7.6±9.3 – from 2.5 [LL] to 36.3 [ST]

§ Dense annotation – 3.8±0.2 spans/post

§ Frequent overlaps – up to 23%±2% for TC and AE

FAINA dataset: statistics AVG SPAN LENGTH
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#SPANS

Check the paper 
for pairwise overlaps!



We cast fallacy detection into di$erent tasks across two dimensions:
§ Annotation unit: post level (POST) and span level (SPAN)

§ Classi"cation granularity: coarse (C; 3 types) and fine (F; all 20 types)

!is implies the use of di$erent evaluation strategies:
§ Metrics: micro F1 for POST, span-level F1 with overlaps [6] for SPAN

§ Modes: strict and so! – the latter accounts for varying severity of labeling errors
§ i.e., partial credit (0.5) if the predicted label is an immediate parent of the actual label

Experiments: setup

8

POST-C
POST-F

SPAN-C
SPAN-F

complexity

[6] Da San Martino et al., 2019. “Fine-Grained Analysis of Propaganda in News Articles”. EMNLP.

Individual scores 
are macro-averaged

https://aclanthology.org/D19-1565/


MVML-ALB

Multi-task learning to jointly model signals of individual annotations
§ MVML (multi-view, multi-label) model for POST tasks

§ |A| multi-label decoders, each outputting all labels exceeding a threshold "
§ MVMD (multi-view, multi-decoder) model for SPAN tasks

§ |A×F| decoders, each outputting the BIO tag for each label & annotation version

Shared encoders: widespread models pretrained on Italian data (ALBERTO & UMBERTO)

Experiments: models

9

Account for human label variation in fallacy detection
Modeling goal

MVML-UMB

MVML-ALB
MVML-UMB



Results

10

0.633

0.532

0.2 0.4 0.6 0.8

MVML-ALB

MVML-UMB

ZSWD-LLAMA

ZSWD-MIXTR

POST-C TASK

0.443

0.213

0.225

0.214

0.1 0.2 0.3 0.4 0.5

POST-F TASK

F1 score F1 score

0.533

0.547

0.109

0.251

0.0 0.2 0.4 0.6

MVMD-ALB

MVMD-UMB

ZSWD-LLAMA

ZSWD-MIXTR

SPAN-C TASK
0.333

0.073

0.034

0.042

0.370

0.089

0.050

0.065

0.0 0.1 0.2 0.3 0.4

SPAN-F TASK

F1 score

0.768

0.766 so!
strict



ZSWD-LLAMATo what extent we can expect to challenge more traditional 
approaches with instruction-tuned LLMs in a zero-shot (ZS) setup?
§ We test LLAMA-3 8B & MIXTRAL 8X7B using prompts with fallacy definitions (WD)
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We conduct a manual audit of LLMs’ 
outputs – 50 per model/setup, 400 in total
§ Raw outputs. Does the LLM provide 

an answer, extra instructions, both, or 
an empty response?

§ Actual answers. Is the answer in the 
requested format (format ok)? Does the 
LLM provide extra explainations, 
wrong labels, or repetitions (repeat)?

Analysis of LLMs’ raw outputs and answers
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Check the paper for results for POST tasks (similar findings)
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We introduced      FAINA, the "rst fallacy detection dataset: 
§ Embracing human label variation at the "ne-grained level of text segments

§ Covering multiple topics and a large time frame to minimize topic/temporal biases

§ Supported by detailed insights on the annotation protocol and data collection

§ Accompained by an evaluation framework, baselines, and insights on LLMs’ outputs

We release % data, & code, and ' annotation guidelines to foster research on fallacy detection
& human label variation, and to support extensions to new languages, topics & annotators 

Conclusions
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