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F allaCie S @ Arguments that seem valid but are not

— Aristotle

Hasty gencralization

Alice got the flu after the influenza vaccine. Vaccines are really useless.

Either used intentionally (for persuading) or unintentionally

= Not only logical: also scructural, from diversion, due to language use [1]

= Difficult to spot: closely follow the patterns of valid arguments [2]

r Impactful: can mislead a wide audience - spread of misinformation )

[1] Tindale, 2007. “Lallacies and Argument Appraisal”. Critical Reasoning and Argumentation; CUP.
2] Musi et al., 2022. “Developing Fake News Immunity: Fallacies as Misinformation Triggers During the Pandemic”. OJCMT.
Aristotle icons created by Freepik - Flaticon



https://www.cambridge.org/core/books/fallacies-and-argument-appraisal/201129A0FFA542571A10622B493D93A4
https://www.ojcmt.net/article/developing-fake-news-immunity-fallacies-as-misinformation-triggers-during-the-pandemic-12083
https://www.flaticon.com/free-icons/aristotle

Fallacy detection

Recognizing fallacies in everyday argumentation plays
a key role in developing individuals' critical chinking skills,
Contributing to mitigate faulty argumentation at 1ts root

NLP can support this, but current datasets have some limitations:
= Coarse-grained annotations (c.g., text-level), few fallacy types, or few annotations
= One fallacy for each text or no overlaps beeween fallacies in the span-level case

o Single ground truch: genuine disagreement is not taken into account!




% FAINA dataset

Dartaset for ﬁne—grained faﬂacy detection with human label variation

®  Focuses on ltalian social media POSLS
Studio americano: la mutazione si diffonde

quattro volte piul velocemente, mai # servono

en: American study: mucation spreads four times faster, but ¢ are needed
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% FAINA dataset

Dartaset for fine—graincd faﬂacy detection wicth human label variation

= Focuses on ltalian social media posts

Studio americano: la mutazione si diffonde

" Embraces mUIUPkf PlauSIble ﬂ quattro volte piu velocemente, mai # servono I\{,f:

answers and natural disagreement Ar

Studio americano: la mutazione si diffonde 56

= Large inventory of 20 fallacy types
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¥ FAINA dataset: data collection and sampling

Public discourse on Twitter minimizing temporal & topic biases
= Multi-year: 2 4-year time frame (2019-01 — 2022-12)
= Multi-topic: & migration, # climate change, and 1& public health

*  Manually-curated list of 436 neutral keywords derived from trustable glossaries and manuals

Posts with highest impact to society minimizing author bias
= Top-k posts (k=10) by like+retweet [3] for cach month/topic

= Resample posts by the same authors after their most impactful one AR PSS
58,490 tokens

[3] Nakov et al., 2022. “Overview of the CLEF-2022 CheckThat! Lab Task 1 on Identifying Relevant Claims in Tweets”. CLEF.



https://ceur-ws.org/Vol-3180/paper-28.pdf

¥ FAINA dataset: (manual) data annoration

Annotation goal

Minimize annotation errors whilst keeping signals of human label variation

Intrisically difticult task: faﬂacy nuances, inventory, granularity, overlaps
A Crowdsourcing is not suitable in this context — discussion is paramount!
= 2 expert annotators with different sociodemographics and background

= 5 rounds of annotation/discussion (resolve errors, keep genuine disagreement) 380

person-hours




¥ FAINA dataset: inter-annotator agreement
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(4] Mathet et al., 2015. “The Unified and Holistic Method Gamma (y) for Inter-Annotator Agreement Measure and Alignment”. CL.
[5] Mathet, 2017. “The Agreement Measure Yeard Complement to y Focused on Categorization of a Continuum”. CL.
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[5] Mathet, 2017. “Ihe Agreement Measure y.,,.a Complement to y Focused on Categorization of a Continuum”. CL.



https://aclanthology.org/J15-3003/
https://aclanthology.org/J17-3006/

¥ FAINA dataset: inter-annotator agreement

PER-CLASS IAA (y.,) ON 11,064 SPANS

We use yand y,, [4, 5] measures o7 067 7 0
. 0.60 0.54 5y 0.56 0-57
for span-level labels with overlaps it B EYTEEEre Friare “’-oz i --0035445
0.40 0.34 7
I RIANT I
Y = 0.6240 Yeu = 0.5445 020
(identification) (classification) 2SS0 08RaLEEEIFEEE2 a5

0.8 S‘pan‘ 1der‘1t1ﬁc‘at10n 0.8 S‘pan‘ clas‘s1ﬁc‘at101‘1

0.7 ;/\".\‘ 0.7
0.6 = 0.6

T

[AA over rounds and before/after discussions

. . E i ) }/‘\.._4\;
= Discussions are necessary for such a complex rask R 5
- = 0.4 - 04
: , 0.3} . 0.3 ;/'/./Fﬂ
= Disagreement can be resolved only parcially P 02l
round round
= Identifving fallacy spans is the main bottleneck for IAA EE——r 6

(4] Mathet et al., 2015. “The Unified and Holistic Method Gamma (y) for Inter-Annotator Agreement Measure and Alignment”. CL.
[5] Mathet, 2017. “The Agreement Measure Yeard Complement to y Focused on Categorization of a Continuum”. CL.



https://aclanthology.org/J15-3003/
https://aclanthology.org/J17-3006/

¥ FAINA dataset: statistics JSPANS AVG SPAN LENGTHH

319 AH

213 AA = A2
2,049 AE am
" 11,064 spans — 5,532, spans/annotator 142 CO
94 CP pesssssssss
= Avg token length of 7.6, , — from 2.5 [LL] t0 36.3 [ST] 20 R —
_93 482 DO ]
. 406 EP mssan
" Dense annotation — 3.8, , spans/post 239 FA b
90 FD e
= Frequent overlaps — up to 23%,,,, for TC and AE ¥ W .
e 464 HG pws
LTRSESSEESEmEzEEsoma | copesoRIEiiils e 2484 LL §
R oo | oooton - SR 0 o | oo LI24 NC §
~Rom-v EEme EEa-c N W - czoconEE o EEmE ocoR L 257 RH
N B EhE BOERe B Y EIOEREY [ BRI ]
4 B BB S eB SRR SR B Check the paper 172 SS  —
S B A AR E B B B | . o] 384 SL W
tlmia e ol ey | for pairwise overlaps G — ey
-l s e W el vl o R 285 TC
m x o [l 2 s ol w0 B owsososos [ B EEEIEEY |
o 0 8 B BN oeen Pag 1,138 VA —
N el = B YTl oEH 0.0 20.0 40.0
SSSSSSSS EEE: B4 @ = wiEgofs: EHEE: EEEEz: o2 0«




|
l |

INSUFFICIENT PROOF SIMPLIFICATION DISTRACTION

Experlments setup z I = L L. :: s

We cast faﬂacy detection into different tasks across two dimensions:

= Annotation unit: post level (POST) and span level (SPAN) complexity

= Classification granularity: coarse (C; 3 types) and fine (E; all 20 types)
| SPAN-F |

ThlS 1mph€s thC usc Of dlffCI’Cl’lt evaluatlon StI'athICSI Individual scores

= Metrics: micro F1 for POST, span-level F1 with overlaps [6] for sSPAN 9 macro-averaged

»  Modes: strict and soft — the latter accounts for varying severity of 1abehng CTTOTS

" j.c., partial credit (0.5) if the predicted label is an immediate parent of the actual label S

[6] Da San Martino et al., 2019. “Fine-Grained Analysis of Propaganda in News Articles”. EMNLP,



https://aclanthology.org/D19-1565/

Experiments: models

Modeling goal

Account for human label variation in fallacy detection

Multi-task learning to jointly model signals of individual annotations

" MVML (multi-view, multi-label) model for POST tasks

" MVMD (multi-view, multi-decoder) model for SPAN tasks
= |AXF|decoders, each outputting the BIO tag for each label & annotation version

Shared encoders: widespread models pretrained on [talian data (ALBERTO & UMBERTO) 9

|A] multi-label decoders, each outputting all labels exceeding a threshold T




Results

POST-C TASK POST-F TASK

MVML-UMB _ 0.766 - 0.213

02 04 06 08 01 02 03 04 05
F1 score F1 score

SPAN-C TASK SPAN-F TASK

0.333

wvoo-ave [ = S
wo-ove I [ (5

00 02 04 0.6
F1 score

00 01 02 03 04

F1 score

10




Results

POST-C TASK POST-F TASK SPAN-C TASK SPAN-F TASK
MVML-ALB _ 0.768 _ 0.443 MVMD-ALB _ 0.533 |”(|)”‘303§70
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? To what extent we can expect to challenge more traditional
approaches with instruction-tuned LLMs in a zero-shot (2S) setup?

" We test LLAMA-3 8B & MIXTRAL 8X7B using prompts with fallacy deﬁnitions (WD) 10




Analysis of LLMs’ raw outputs and answers
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Check the paper for results for POST tasks (similar findings)
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Analysis of LLMs’ raw outputs and answers
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Conclusions

We introduced VFAINA, the first fallacy detection dataset:

* Embracing human label variation at the fine-grained level of text segments

= Covering multiple topics and a large time frame to minimize topic/temporal biases
= Supported by detailed insights on the annotation protocol and data collection

= Accompained by an evaluation framework, baselines, and insights on LLMs’ outputs

We release 1 data, 2 code, and W annotation guidelines to foster rescarch on fallacy detection
& human label variation, and to support extensions to new languages, topics & annotators 12




