

WorthIt: Check-worthiness Estimation of Italian Social Media Posts

Agnese Daffara^{[1],[2]}, Alan Ramponi^[3] and Sara Tonelli^[3]

CLiC-it 2025

[1] University of Pavia

^[2]University of Stuttgart

[3] Bruno Kessler Foundation

What is "check-worthy"?

A claim is **check-worthy** and calls the attention of a **fact-checker** if:

- It is **factual** and **verifiable**, i.e., it presents an "assertion about the world that is checkable"^[1].
- It is **not** "easy to fact-check by a layperson" [2].
- It is "likely to be **false**, is of **public interest**, and/or appears to be **harmful**" [2].

^[1] Konstantinovskiy, O. et al. (2021), <u>Toward automated factchecking: Developing an annotation schema and benchmark for consistent automated claim detection</u>, Digital Threats 2.

^[2] P. Nakov et al. (2022), Overview of the CLEF-2022 Check-That! lab task 1 on identifying relevant claims in tweets, CLEF 2022.

What is "check-worthy"?

SOCIAL MEDIA POST

FV CW

I believe in ghosts!

x x

The capital of Italy is Rome

Vaccines cause autism

Check-worthiness estimation

(or check-worthy claim detection)

Why does it matter?

Check-worthiness estimation is an important step in the **fact-checking pipeline**, because it feeds to the fact checker only those posts that are **societally relevant** and **potentially impactful**, optimizing the verification process.

Vaccines cause autism

The task is well-known^[3], but with some **limitations**:

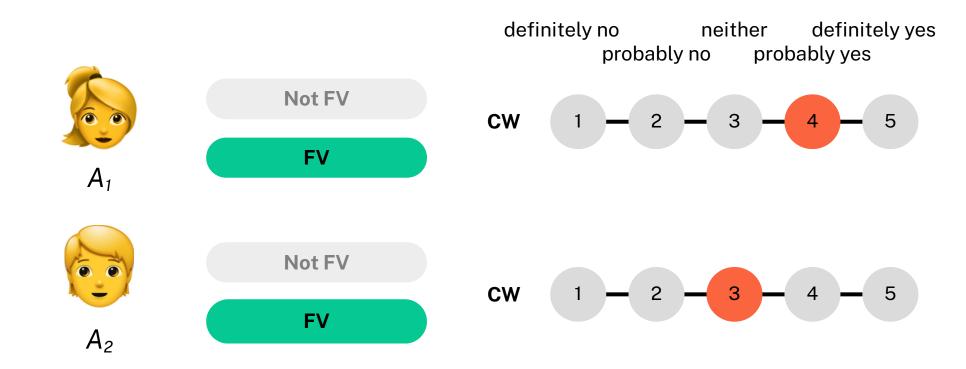
- Datasets are mainly on specific issues (e.g. COVID-19) and a small time period.
- Existing datasets in Italian^{[4][5]} contain only check-worthy claims to be **directly** fact-checked.
- The **relationship** between factuality and check-worthiness is not explored.

- Dataset for factuality/verifiability (FV)
 and check-worthiness (CW) estimation.
- Focuses on Italian social media posts.
- Embraces **Human Label Variation (HLV)**.
- Two expert annotators.
- Four annotation rounds with discussion.

Example

"Tre ragazzi da Mali, Iraq e Mauritania, salvati stanotte a oltre 2000 mt. a Claviere, alta Valsusa. Migranti. Sotto la pioggia, con un principio di ipotermia."

EN: "Three young men from Mali, Iraq, and Mauritania were rescued last night at over 2000 meters in Claviere, upper Valsusa. Migrants. In the rain, with the onset of hypothermia."



Data collection & sampling

2,160 post 83,315 tokens 38.6 avg token lenght

Public discourse on Twitter minimizing temporal & topic biases:

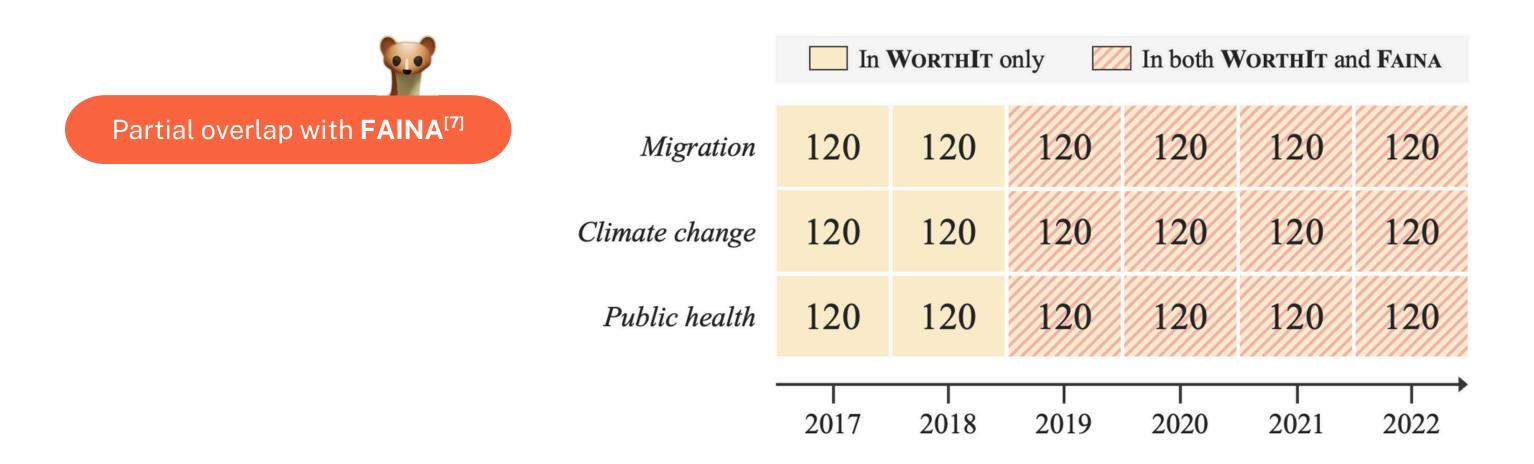
- Multi-year: **∑** 6-year time frame (2017-01 2022-12).
- Multi-topic: 🔁 migration, 🏲 climate change, and 🟥 public health.
 - Manually-curated list of 436 neutral keywords derived from trustable glossaries and manuals.

Posts with **highest impact** to society minimizing author bias:

- Top-k posts (k=10) by like+retweet^[6] for each month/topic.
- Resample posts by the same authors after their most impactful one.

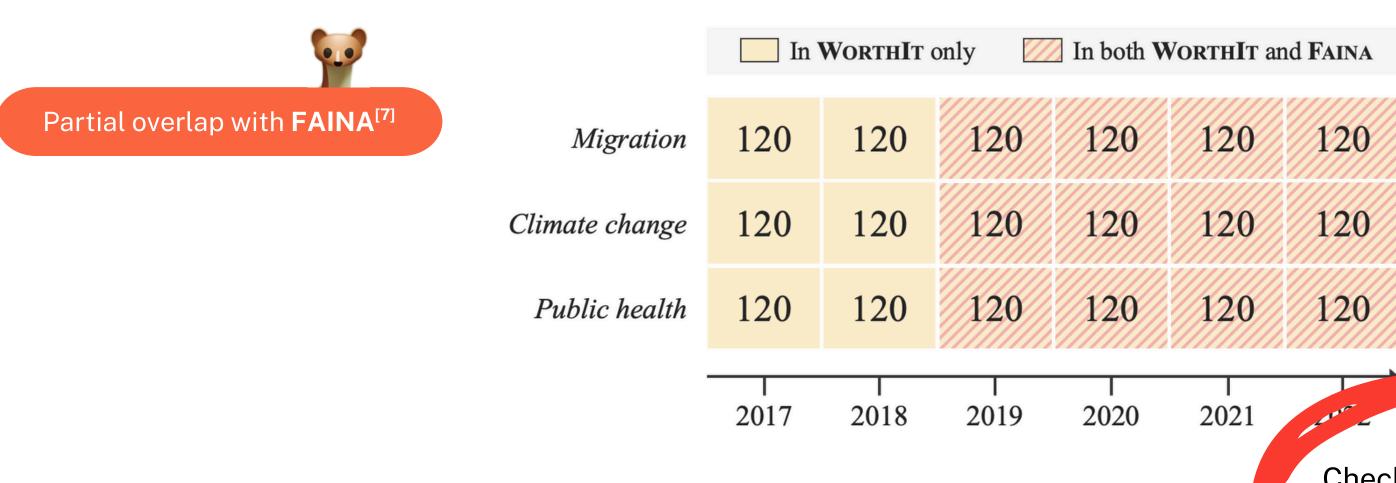
^[6] P. Nakov et al. (2022), Overview of the CLEF-2022 Check-That! lab task 1 on identifying relevant claims in tweets, CLEF 2022.

Data collection & sampling



^[7] Alan Ramponi et al. (2025), <u>Fine-grained Fallacy Detection with Human Label Variation</u>, NAACL 2025.

Data collection & sampling



[7] Alan Ramponi et al. (2025), Fine-grained Fallacy Detection with Human Label Variation, NAACL 2025.

Check the poster in the next poster session!! :)

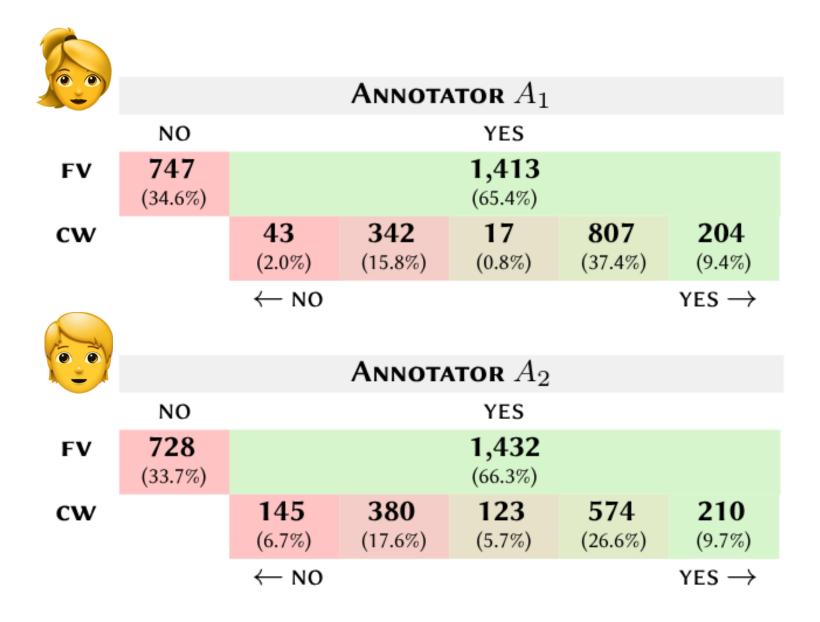
Data annotation: statistics

The dataset is released with disaggregated labels to incentivate future studies on HLV.

Inter-annotator agreement (IAA) is calculated with Krippendorff's Alpha (α) after discussion, by keeping **natural** disagreement:

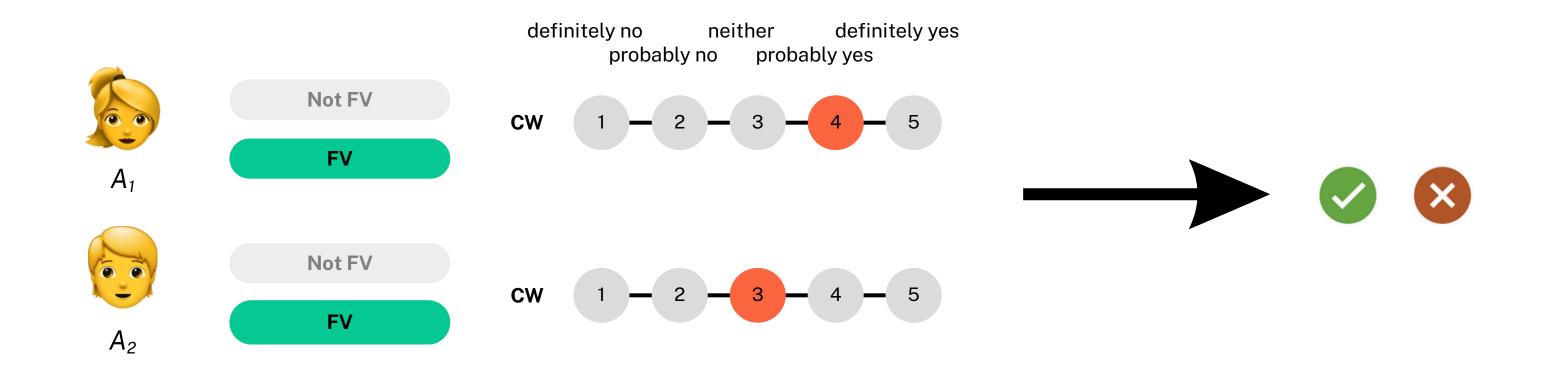
- 0.83 for factuality/verifiability.
- 0.69 for check-worthiness (lower as expected).

If a post is not factual/verifiable, annotators do not label it for check-worthiness.



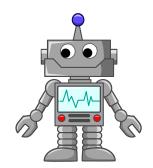
Setup: label aggregation

• We **aggregate labels** for our experiment: a post is considered factual if both annotators agreed on ts factuality, and check-worthy if they gave positive labels (*probably yes* and *definitely yes*).



Setup: data splits

- **Data splits**: we divide WorthIt into k training and test sets using k-fold cross-validation (k = 5) preserving the label distribution. Training sets are further divided into development and train test:
 - 80% training and 20% development for encoder-based models.
 - 50% for retrieving few-shot examples and 50% as a development set for decoder-based models.



Setup: models

Encoder-based models

Italian models:

- Alberto
- UmBERTo
- dbmdz's Italian BERT models:
 - BERT-it base
 - BERT-it xxl

Multilingual models:

- mBERT
- XLM-RoBERTa

Decoder-based models (instuction tuned)

Italian models:

- LlaMAntino-3-ANITA-8B
- Minerva-7B

Multilingual models:

- Qwen2.5-7B
- <u>Llama3.1-8B</u>

For **fine-tuning**, we use the MaChAmp toolkit (v0.4.2)^[8].

Setup: best prompt selection

Example set: we test the models over 5 sets of examples (5 examples each).

<u>Language and guidelines</u>: we test the models over 4 settings:

- IT_NG: Italian with guidelines
- **IN_G**: Italian without guidelines
- EN_NG: English without guidelines
- EN_G: English with guidelines

Final prompt configuration:

- Example set #1
- Without guidelines: **EN_NG**, **IT_NG**

Prompt for factuality/verifiability (en)

Classify the post as "factual" or "not factual". Answer only with "factual" or "not factual".

\$FV_GUIDELINES

Examples:

\$FV_EXAMPLES

Answer:

\$POST_TEXT =

Prompt for factuality/verifiability (it)

Classifica il post come "fattuale" o "non fattuale". Rispondi solo con "fattuale" o "non fattuale".

\$FV_GUIDELINES

Esempi:

\$FV_EXAMPLES

Risposta:

 $POST_TEXT =$

Prompt for check-worthiness (en)

You classified the post as \$FV_LABEL. Now classify the post as "check-worthy" or "not checkworthy". Answer only with "check-worthy" or "not check-worthy".

\$CW_GUIDELINES

Examples:

\$CW_EXAMPLES

Answer:

 $POST_TEXT =$

Prompt for check-worthiness (it)

Hai classificato il post come \$FV_LABEL. Ora classifica il post come "check-worthy" o "non check-worthy". Rispondi solo con "check-worthy" o "non check-worthy".

\$CW_GUIDELINES

Esempi:

\$CW_EXAMPLES

Risposta:

 $POST_TEXT =$

<u>Hypotesis:</u> factuality/verifiability (FV) information can help predicting the check-worthiness (CW) of a post.

We test two configurations for each model

Encoder-based models:

- **SINGLE-TASK**: the model is fine-tuned with CW labels only.
- MULTI-TASK: FV serves as an auxiliary task.

Decoder-based models:

- NOT-SEQUENTIAL: the model is prompted directly for CW.
- **SEQUENTIAL**: the model is firstly instructed to classify the post based on FV, then the output label is incorporated into a prompt which instructs the model to assess CW of the same post.

Evaluation:

- Pos F1 (main metric)
- Pos Prec, Pos Rec and Acc.
- Mean average precision (mAP) for encoder-based models
- N. of "unknown" outputs for decoder-based models

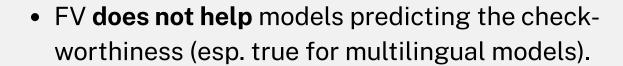
Results Encoder-based models

- FV as a support task **helps** improving the Pos F1 performance across all models.
- Best scores: **BERT-it xxl** in **MULTI-TASK** setting.

Model	Setting Pos F ₁	
AlBERTo	SINGLE TASK MULTI-TASK	$0.7039_{\pm 0.03}$ $0.7107_{\pm 0.02}$
UmBERTo	SINGLE TASK MULTI-TASK	$0.7247_{\pm 0.02}$ $0.7277_{\pm 0.02}$
BERT-it base	SINGLE TASK MULTI-TASK	$0.7121_{\pm 0.02}$ $0.7146_{\pm 0.03}$
BERT-it xxl	SINGLE TASK MULTI-TASK	$0.7332_{\pm 0.02}$ $0.7473_{\pm 0.02}$
mBERT	SINGLE TASK MULTI-TASK	$0.6767_{\pm 0.03}$ $0.6828_{\pm 0.03}$
XLM-RoBERTa	SINGLE TASK MULTI-TASK	$\substack{0.7014 \pm 0.02 \\ \underline{0.7138} \pm 0.02}$

16

Results



• Highest score: LlaMAntino-3-ANITA-8B SEQ, EN.

RESULTS

• Minerva-7B is the only model to produce "unknown" outputs.

Model	Setting	Lang	Pos F ₁	Unknown
LlaMAntino-3-ANITA-8B	NOT SEQ	en	0.6556 ± 0.03	0
		it	0.6409 ± 0.02	0
	SEQ	en	$0.6771_{\pm 0.02}$	0
		it	$0.6111_{\pm 0.03}$	0
Minerva-7B	NOT SEQ	en	0.3506 ± 0.01	$81_{\pm 2}$
		it	0.3629 ± 0.01	112±8
	SEQ	en	$0.2944_{\pm0.00}$	127 ± 8
		it	0.4442 ± 0.02	58 ± 4
Qwen2.5-7B	NOT SEQ	en	$0.5917_{\pm 0.02}$	0
		it	0.6273 ± 0.01	0
	SEQ	en	0.5885 ± 0.01	0
		it	$0.6247_{\pm0.02}$	0
Llama3.1-8B	NOT SEQ	en	$0.5470_{\pm0.00}$	0
		it	0.5616 ± 0.01	0
	SEQ	en	0.5585 ± 0.01	0
		it	$0.5584_{\pm0.01}$	0

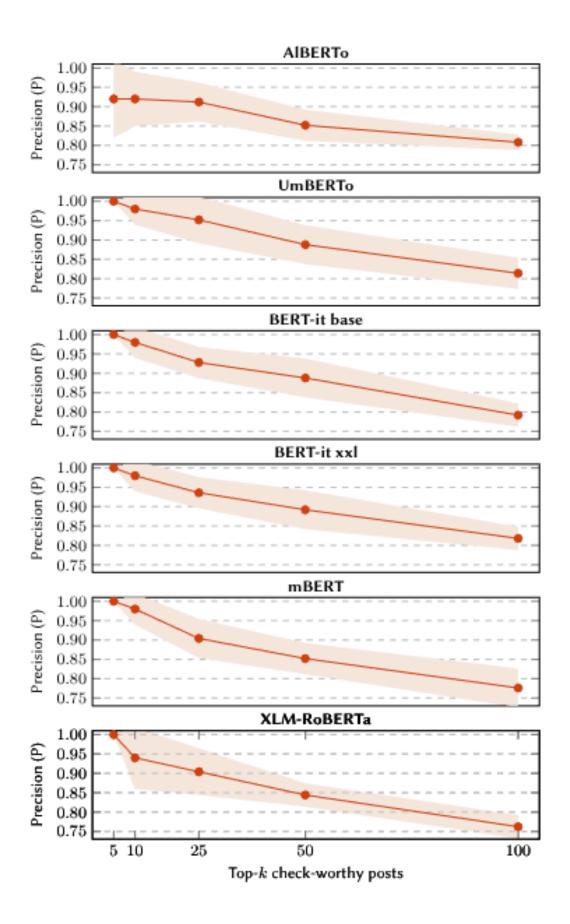
Discussion

Ranking of posts by check-worthiness (encoder-based models)

Are encoder-based models good at ranking CW posts?

The ratio of posts correctly classified as check-worthy within the top-k recommended check-worthy posts (P@k) by all **encoder-based models** is:

- Precision is 0.90-0.95 at k = 25
- Precision is 0.80-0.85 at k = 100
- → These models can help fact-checkers in their daily routine!

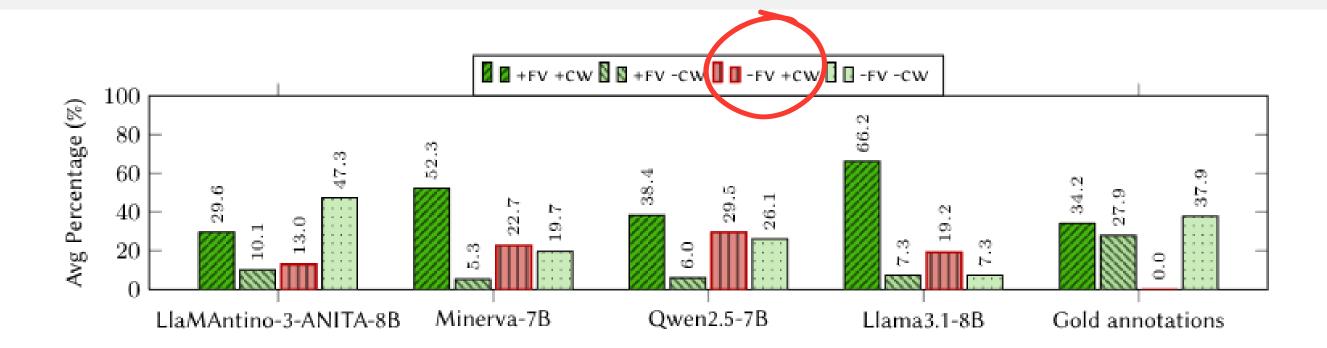


Discussion

Relation between FV and CW (decoder-based models)

Do decoder-based models understand the relation between FV and CW?

- Models tend to produce the invalid label combination -FV +CW.
- Models tend to avoid the combination **+FV -CW**, preferring to align the two labels rather than diversifying them.
- → These models seem to **not grasp** the relation between the two concepts



Conclusions

- We introduce **WorthIt**, the first dataset of Italian social media posts annotated for factuality/verifiability (FV) and check-worthiness (CW) that spans multiple years **\(\bigz**\) and topics **\(\bigz**\) \(\bigce\) while considering natural disagreement. This dataset partially overlaps with the dataset **FAINA** for fallacy detection.
- We conduct thorough check-worthiness estimation experiments with encoder- and decoder-based models.

Main finding

- Encoder-based models in a multi-task setting reach the best results → they can be used in fact-checking pipelines.
- Decoder-based models fail to capture the relation between FV and CW and produce inconsistent results →
 they require more caution.

GitHub repository:

https://github.com/dhfbk/worthit

Thank you!

Discussion

Correlation between models' outputs

What is the correlation between all models' outputs?

- We calculate the Pearson correlation coefficient (r) between all best models' predictions.
- Encoder-based models show strong positive mutual correlation $(r \ge 0.65) \rightarrow \text{high consistency}$ in the predictions.
- Decoder-based models show low inter-model correlation → greater output variability.

