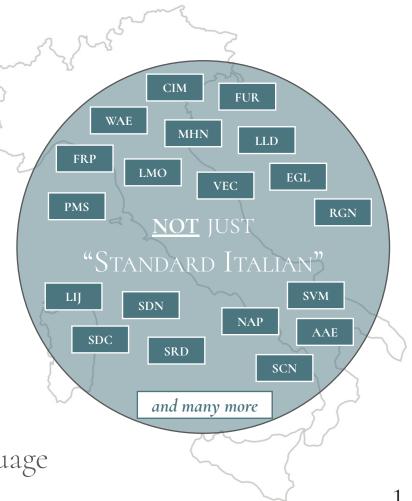


GeoLingIt at Evalita 2023

Overview of the Geolocation of Linguistic Variation in Italy Task

Alan Ramponi,¹ Camilla Casula^{1,2}

¹Fondazione Bruno Kessler ²University of Trento


Introduction

Italy: linguistically-diverse country

- Many languages, dialects, and regional varieties
- Mostly oral and without established orthography

Diatopic language variation in Italy

- Focal point in **linguistics** (e.g., linguistic atlases)
- User-generated texts: informal, spontaneous language

Data

DIATOPIT: the first social media corpus focused on **diatopic language** variation in Italy for language varieties other than Standard Italian

- Actual use, orthography choices, code-switching (language contact and vitality)
- chiov' tutt a jurnat', ce serv' o mbrell' en. it's raining all day, we need an umbrella

2 ho così sonno che me bala l'oeucc

en. I'm so sleepy that my eye trembles

3 da caruso anche io ci andavo spesso!

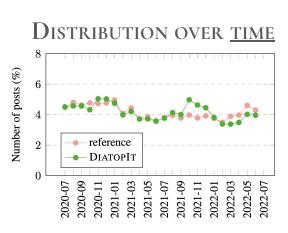
en. I used to go there often as a kid too!

2

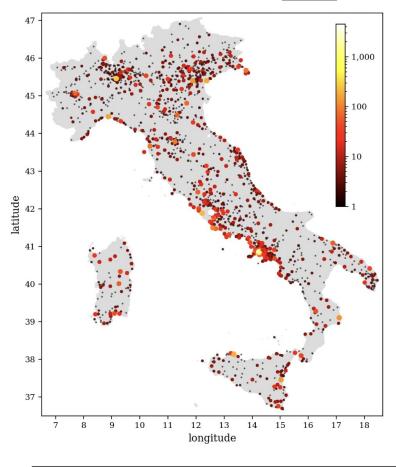
Data

Source: Twitter, geolocated in Italy

TIMEFRAME: 2 years [2020-07 - 2022-06]


SAMPLING: based on (curated) OOV tokens

Curation: manual exclusion of spam/mismatches


Augmentation: for under-represented areas

15K+ posts by 3,7K users

• Thorough corpus analysis in Ramponi & Casula (2023)

DISTRIBUTION OVER SPACE

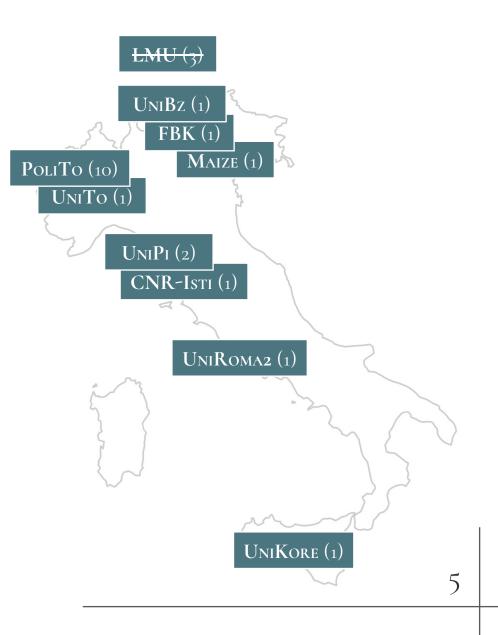
Ramponi & Casula, 2023. "DiatopIt: A Corpus of Social Media Posts for the Study of Diatopic Language Variation in Italy". VarDial@EACL.

Task description and evaluation

Given the text of a post exhibiting regional Italian features or (partially or fully) written in local languages and dialects of Italy, predict the location in which the variety expressed in the post is spoken

Tracks: STANDARD TRACK (country-level) or SPECIAL TRACK (linguistic area of choice)

- A) Coarse-grained geolocation. Predict the region; macro F1 score
- B) Fine-grained geolocation. Predict the lat/lon coordinates; <u>avg dist (km)</u>

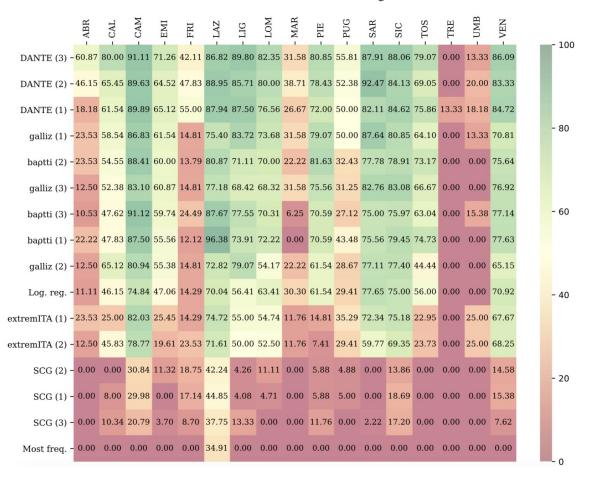

^{*&}lt;u>Dev/test sets</u>: smoothed distribution, further curation to include a wide range of linguistic phenomena / microvariation

Participation

37 registrations and 35 submitted runs

Heterogeneously composed teams with up to 7 individuals, from master students to senior academic researchers

	Subtask A (coarse-grained)	Subtask B (fine-grained)	Total
Standard track	14 (5)	12 (5)	26 (6)
Special track	6 (2)	3 (1)	9 (2)
Total	20 (5)	15 (5)	<mark>35</mark> (6)


Subtask A: Methods and results

	Team	Run	Р	R	F ₁
1	DANTE	(3)	79.46	63.75	66.30
2	DANTE	(2)	66.98	62.65	63.93
3	DANTE	(1)	65.18	60.09	61.72
4	galliz	(1)	82.94	52.25	56.20
5	ba $oldsymbol{ ho}$ tti	(2)	67.97	51.62	53.18
6	galliz	(3)	74.58	49.49	52.08
7	ba $oldsymbol{ ho}$ tti	(3)	52.93	51.75	51.74
8	ba $oldsymbol{ ho}$ tti	(1)	56.05	51.68	51.72
9	galliz	(2)	68.98	45.36	47.74
	Log. reg.		62.19	42.43	46.11
10	extremITA	(1)	72.14	38.84	39.99
11	extremITA	(2)	65.03	37.62	38.18
12	SCG	(2)	12.92	9.82	9.28
13	SCG	(1)	10.15	9.97	9.04
14	SCG	(3)	10.42	6.60	7.85
	Most freq.		1.24	5.88	2.05

Model & pretraining data		Extra pretraining methods & data	Fine-tuning methods and data	
Ens(15× 👨)	_	_	_	
<u> </u>	it	MTL, sources: ≥> W	STL, DiatopIt	
•	it	MTL, sources: >>> W	STL, DiatopIt	
Ens(en	_	STL, augmented DiatopIt	
<u> </u>	it	CPT, augmented DiatopIt w∕ 赵 W	STL , DiatopIt	
Ens(en	_	STL, augmented DiatopIt	
Ens(+ Ir)	it	_	STL, DiatopIt	
<u>.</u>	it	_	MTL, DiatopIt	
Ens(en	_	STL, augmented DiatopIt	
T5	•		NATE TYTA LITTA	
	it *		MTL, EVALITA 2023	
		LoRA, Alpaca instructions in "it"	MTL, EVALITA 2023	
svm	_	_	STL, DiatopIt	
svm	_	_	STL, DiatopIt	
lr	_	_	STL, DiatopIt	
			6	

Models: Ens(*) Ensemble; BERT-based; LLaMa-based; Edictionary-based (≥ + DiatopIt); T5-based; Svm Support vector machines; Logistic regression Methods: STL: Single-task learning; MTL: Multi-task learning; CPT: Contrastive pretraining Sources: Dialettando; Wikipedia language editions

Subtask A: Analysis

Results differ <u>a lot</u> between regions

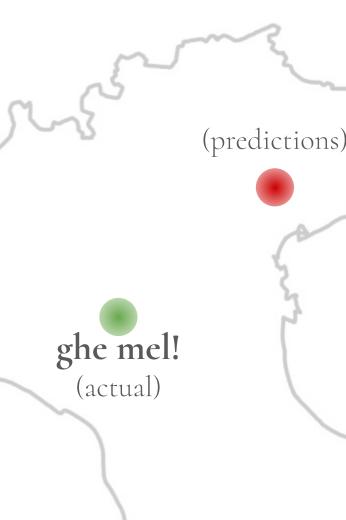
- e.g., ABR, MAR, TRE and UMB
 [scarce in train, absent in dev]
 Very hard to model w/ traditional
 learning and tuning methods
- Beyond traditional learning/tuning
- e.g., CAL, EMI, FRI and PUG
 [represented in train, present in dev]
 Easily misclassified w/ regions in which
 similar varieties are predominantly used
- Beyond "raw modeling": linguistics!

Subtask B: Methods and results

	Team	Run	Avg dist (km)
1	ba $oldsymbol{ ho}$ tti	(3)	97.74
2	ba $oldsymbol{ ho}$ tti	(1)	98.79
3	DANTE	(3)	110.35
4	DANTE	(2)	112.58
5	DANTE	(1)	114.00
6	ba $oldsymbol{ ho}$ tti	(2)	120.02
7	extremITA	(1)	126.10
8	Salogni	(1)	128.19
9	extremITA	(2)	145.15
	kNN		263.35
10	SCG	(1)	280.99
	Centroid		281.04
11	SCG	(2)	281.20
12	SCG	(3)	289.91

Model & pretraining data		a Extra pretraining methods & data	Fine-tuning methods and data		
- + Postproc it		_	MTL, DiatopIt		
<u> </u>	it	CPT, augmented DiatopIt w/ >> W	MTL, DiatopIt		
Ens(2 × 👨)	it	_	_		
•	it	MTL, sources: >>> W	STL , DiatopIt		
<u> </u>	it	MTL, sources: >>> W	STL , DiatopIt		
<u> </u>	it	_	MTL, DiatopIt		
T5	it	-	MTL, EVALITA 2023		
Ro 👨 a	_	_	STL , DiatopIt		
	*	LoRA, Alpaca instructions in "it"	MTL, EVALITA 2023		
le	_	_	STL , DiatopIt		
Ir	_	_	STL , DiatopIt		
knn	_	_	STL, DiatopIt		

8


Subtask B: Analysis

Test set prediction (avg error)

• Min: 0.89 km, max: 668.11 km, median: 58.77 km

Misclassification due to lexical items that are highly frequent in other locations

• e.g., "<u>ghe</u> mel!" (en: "of course", *Parmigiano* variety) in the **Treviso area** (Veneto, due to the Venetian ADV/PROP "ghe") instead of the **Parma area** (Emilia)

Special track

Subtask A and B: Methods and results

	Team	Run	P	R	F ₁	Model & pretraining data	Extra pretraining	Dialettando
	Tuscany-Lazio area					pretraining data	methods & data	Wikipedia
1	galliz	(3)	81.25	83.32	82.20	Ens(+ =) en	STL, augmented DiatopIt	
2	galliz	(1)	72.43	80.42	73.40	Ens(= + =) en	STL, augmented DiatopIt	Vocabolario del
3	galliz	(2)	72.43	80.42	73.40	Ens(+ =) en	STL, augmented DiatopIt	Fiorentino Contemporaneo
	Log. reg.		91.79	66.67	70.53			
	Most freq.		38.62	50.00	43.58			The Roman Post

The Gallo-Italic area (Pie, Lom, Lig and Emi) has been explored, too

- Subtask A: SCG team, 3 runs based on Logistic Regression and Support Vector Machines
- **Subtask B**: SCG team, 3 runs based on Logistic Regression and k-Nearest Neighbors

Discussion and conclusion

- GeoLingIt has attracted wide interest from the community
- Modeling diatopic variation in Italy is a difficult but exciting task
- Great opportunities for more linguistically-grounded NLP

Poster booster session (~3 min each)

Baptti team

A. Koudounas, F. Giobergia, I. Benedetto, S. Monaco, L. Cagliero, D. Apiletti, and E. Baralis

DANTE team

G. Gallipoli, M. La Quatra, D. Rege Cambrin, S. Greco, and L. Cagliero

Galliz team

T. Labruna and S. Gallo

Salogni team

I. Salogni