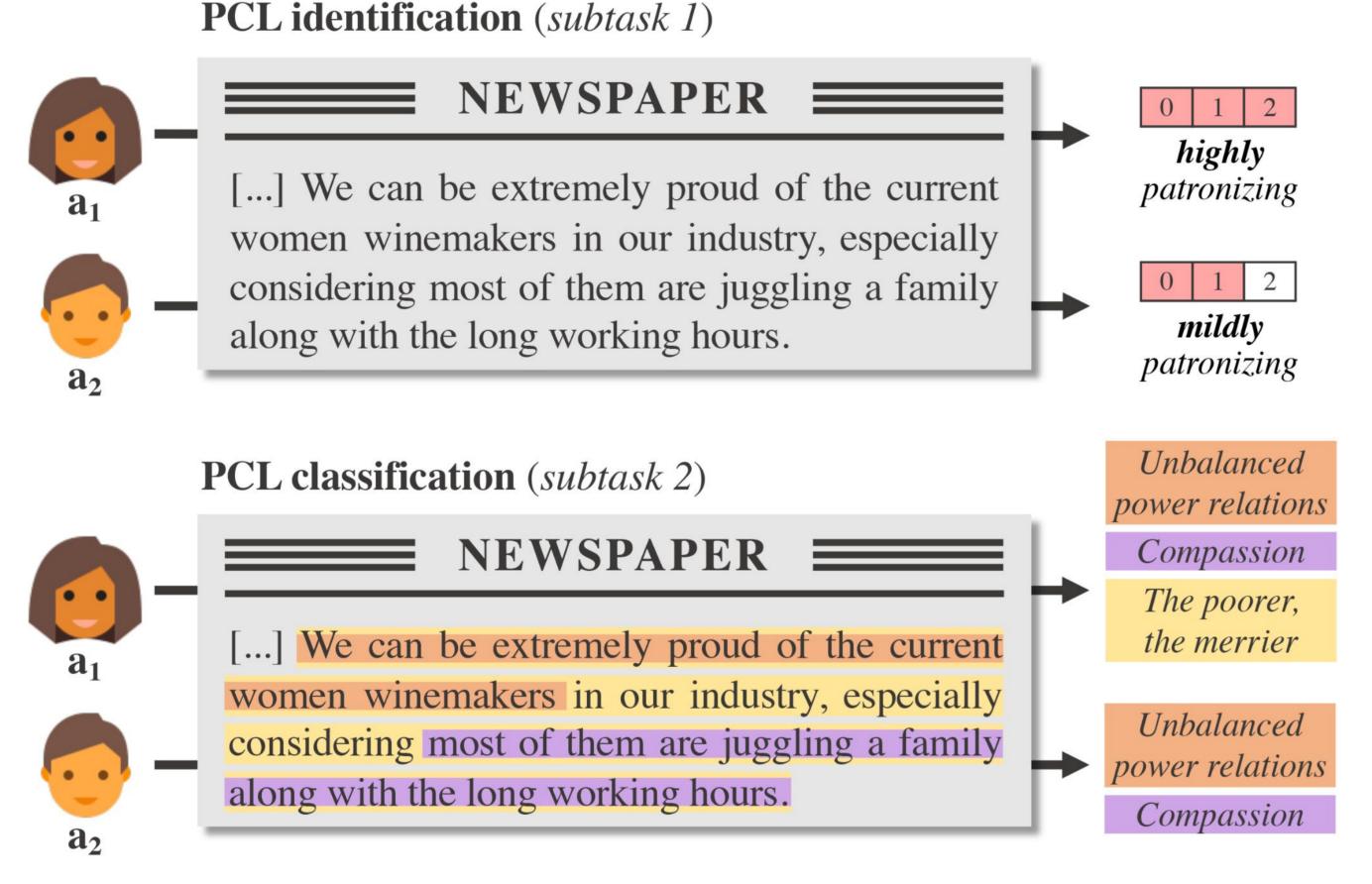


DH-FBK at SemEval-2022

# Leveraging annotators' disagreement and multiple data views for patronizing language detection


Alan Ramponi & Elisa Leonardelli – Fondazione Bruno Kessler, Trento, Italy

## Background

Patronizing & condescending language (PCL) Language use denoting superior attitude towards others, who are depicted in a compassionate way [Pérez-Almendros et al., 2020]

- Drives exclusion of already vulnerable communities
- Detection has social impact (e.g., suggestion tools)

**Challenges** Annotators often perceive PCL differently due to background/sensibility, and thus annotate it in different ways



# Task, data and annotation process

Dataset "Don't Patronize Me!" [Pérez-Almendros et al., 2020]

- 10.4K en paragraphs from the news of 20 countries
- All mention one of 10 selected vulnerable communities

**Task setup** Given an input paragraph *P*:

- **PCL identification**: identify whether *P* entails a PCL form
- PCL classification: determine PCL forms expressed by P

#### A closer look at the annotation Annotations by a and a:

| Annotation task                                                 | Individual decisions (a <sub>1</sub> ,a <sub>2</sub> )                                             | Score       | Instances         | Gold label       |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------|-------------------|------------------|--|
| Subtask 1: "Does the paragraph                                  | (0,0)<br>(0,1), (1,0), *                                                                           | 0<br>1      | 8,529<br>947      | No               |  |
| contain any form of PCL?"<br>Values: 0, 1, 2                    | (1,1), *<br>(2,1), (1,2), *<br>(2,2)                                                               | 2<br>3<br>4 | 144<br>458<br>391 | YES              |  |
| Subtask 2: "Which PCL category does the span express (if any)?" | $(c_i, \text{NONE}), (\text{NONE}, c_i)$<br>$(c_i, c_j)_{c_i \neq c_j}, (c_j, c_i)_{c_j \neq c_i}$ | 1           | 1,359             | $c_i$ $c_i, c_j$ |  |
| Values: $c_i, c_j \in C$ , NONE                                 | $(c_i, c_i)$                                                                                       | 2           | 1,401             | $c_i$            |  |

Idea Raw "score" values can be leveraged to capture different shades of PCL based on annotators' interpretation and sensibility, thus modeling their uncertainty and disagreement in detecting PCL

#### References

Don't Patronize Me! An Annotated Dataset with Patronizing and Condescending Language towards Vulnerable Communities (Perez Almendros et al., COLING 2020)

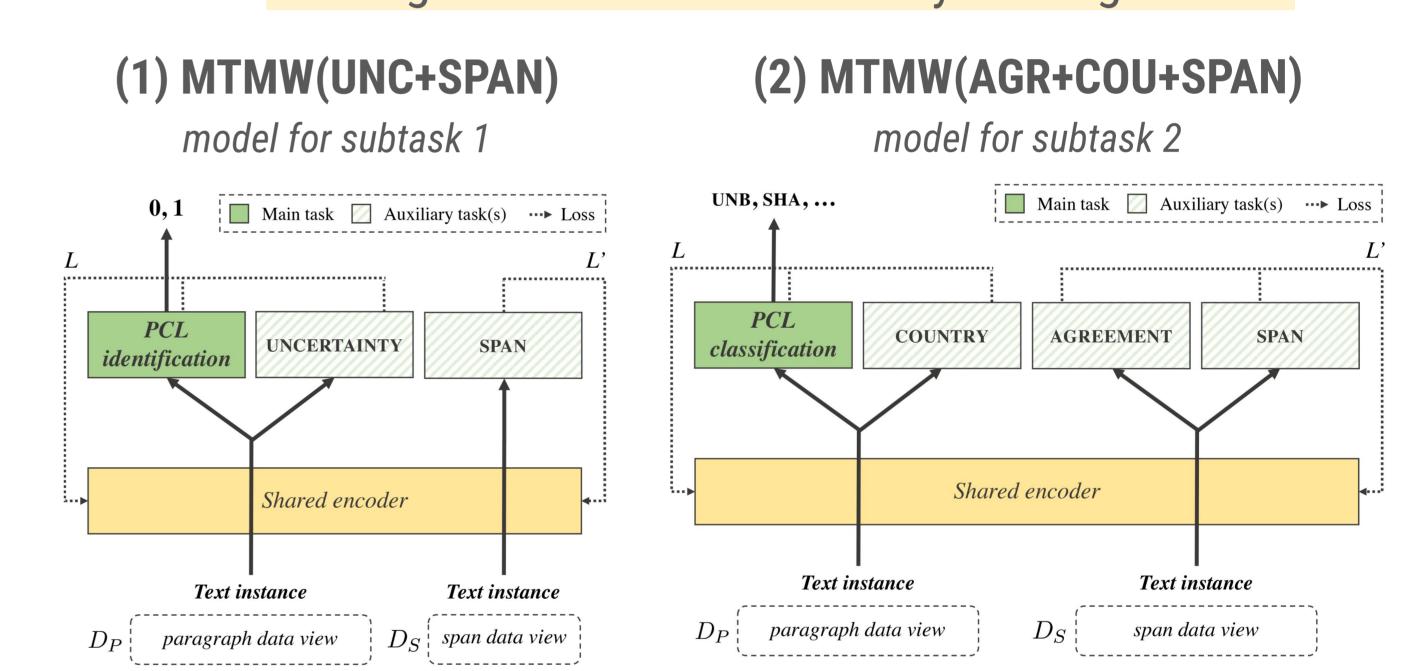
Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in NLP (van der Goot et al., EACL 2021)

### Methods

Based on MaChAmp [van der Goot et al., 2021]

General framework Multi-task learning with shared encoder

- Main task decoder: for the end task (e.g., subtask 1)
- Auxiliary task decoder(s): for providing useful signals


Multiple views Different forms (or views) of the dataset

- Paragraph data view  $(D_p)$ : dataset in its standard form
- Span data view  $(D_s)$ : dataset consisting of all PCL-expressing spans from  $D_{D}$

#### Auxiliary tasks and associated data views

- uncertainty: labels: {0,1,2,3,4}, view: D<sub>p</sub> subtask 1
- agreement: labels: {1,2}, view: D<sub>s</sub> subtask 2
- *span*: <u>labels</u>: {UNB, SHA, PRE, ...}, <u>view</u>: *D<sub>s</sub> subtask 1, 2*
- country: labels: {au, bd, ca, gb, ...}, view:  $D_p$  subtask 1, 2

### Leverage annotators' uncertainty & disagreement



(3) SEQ. FINE-TUNING: On subtask 1, then 2 – model for subtask 1 and 2

**PCL** identification

## Results & analysis

**Test set results**  $\downarrow$  and  $\rightarrow$ 

|                      |                                 |     | P              | R              | $F_1$              |  |  |
|----------------------|---------------------------------|-----|----------------|----------------|--------------------|--|--|
| Organizers' baseline |                                 |     | 39.35          | 65.30          | 49.11              |  |  |
|                      | MTMW(UNC+SPAN) SEQ. FINE-TUNING |     | 64.23<br>53.99 | 52.68<br>55.52 | <b>57.89</b> 54.74 |  |  |
|                      |                                 |     |                |                |                    |  |  |
| PRE                  | AUT                             | MET | COM            | THE            | $F_1$              |  |  |

| PCL classification                  |                       |      |       |                    |      |       |                    |            |
|-------------------------------------|-----------------------|------|-------|--------------------|------|-------|--------------------|------------|
| PGL Classification                  |                       |      |       |                    |      |       |                    |            |
|                                     | UNB                   | SHA  | PRE   | AUT                | MET  | COM   | THE                | $F_1$      |
| Organizers' baseline                | 35.35                 | 0.00 | 16.67 | 0.00               | 0.00 | 20.87 | 0.00               | 10.41      |
| MTMW(AGR+COU+SPAN) SEQ. FINE-TUNING | 52.46<br><b>54.00</b> |      |       | <b>37.71</b> 22.22 |      |       | <b>30.30</b> 20.69 | 250 000 00 |

**Analysis** Contribution of aux tasks and role of disagreement

- Aux tasks Subtask 1: uncertainty consistently improves results; Subtask 2: agreement is orthogonal to country
- Uncert/Disagr Subtask 1: uncertainty worsen results; Subtask 2: instances w/ disagreement are more difficult

#### Conclusion

- Towards annotators-centric NLP for subjective tasks
- Competitive results, without external data or ensembles