

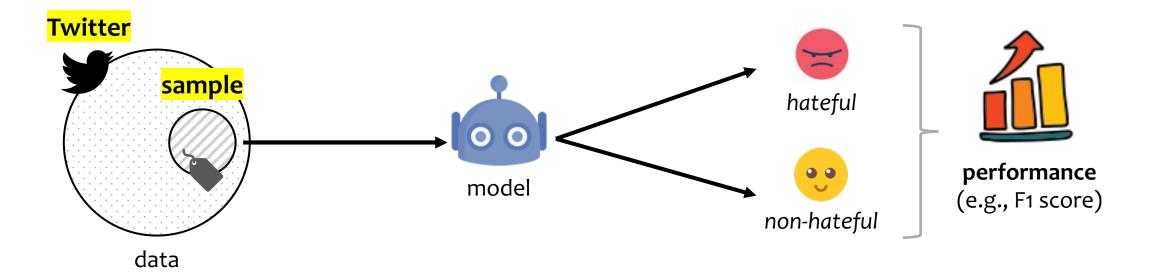
Features or spurious artifacts? Data-centric baselines for fair and robust hate speech detection

Alan Ramponi, Sara Tonelli

Fondazione Bruno Kessler, Trento, Italy

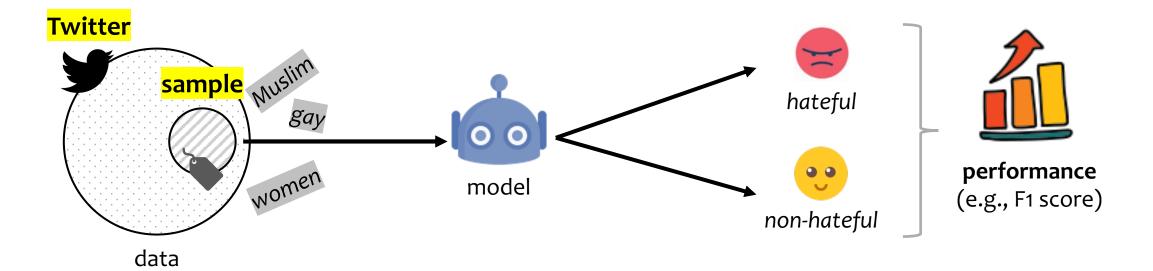
Warning: This presentation contains content that may be offensive/upsetting

Bias in hate speech detection



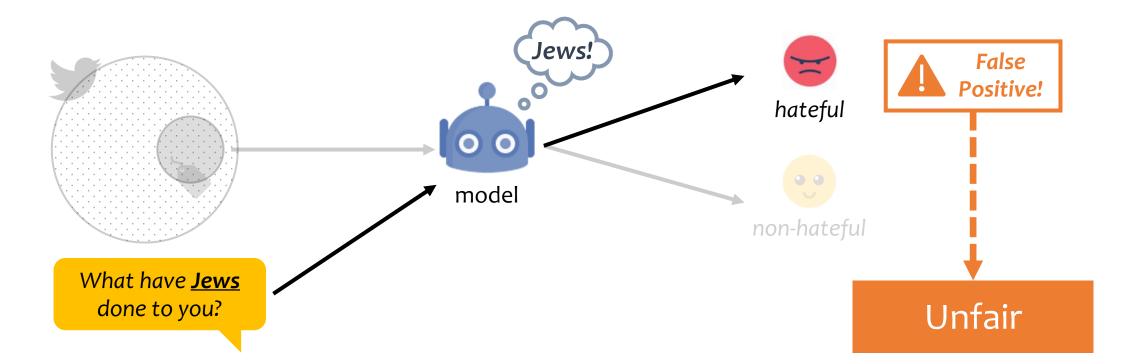
- Focused sampling introduces topic-specific terms [Wiegand+ 2019; i.a.]
- Platforms: norms, practices & lang use introduce platform-specific terms

Bias in hate speech detection



- ► Focused sampling introduces topic-specific terms [Wiegand+ 2019; i.a.]
- Platforms: norms, practices & lang use introduce platform-specific terms
- Data collection shapes distribution of hate targets i.e., identity terms

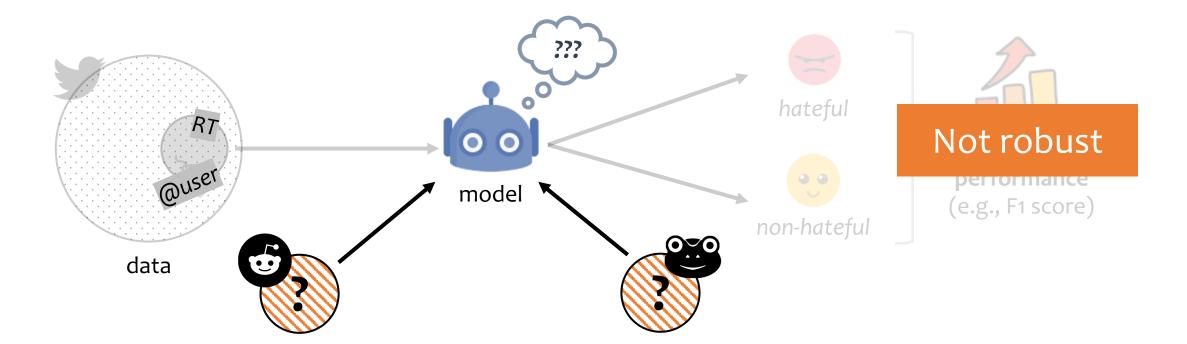
Undesired identity bias



Identity terms as shortcuts for prediction [Zhou+ 2021; Kennedy+ 2020; i.a.]

OOD: out-of-distribution **ID:** in-distribution

Weak out-of-distribution robustness



Platform-specific terms as shortcuts for prediction

"annotation artifacts" in NLI

Focus of this work

Lexical artifacts in hate speech detection

- "Statistical correlations between surface lexical items and labels in training data, which models exploit to derive predictions"

Contributions

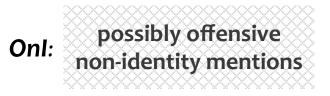
Characterization and cross-platform study

- Impact on OOD robustness & fairness
- Lexical artifacts statement for diagnosis of pre-existing bias

Characterization of lexical artifacts

possibly offensive identity mentions

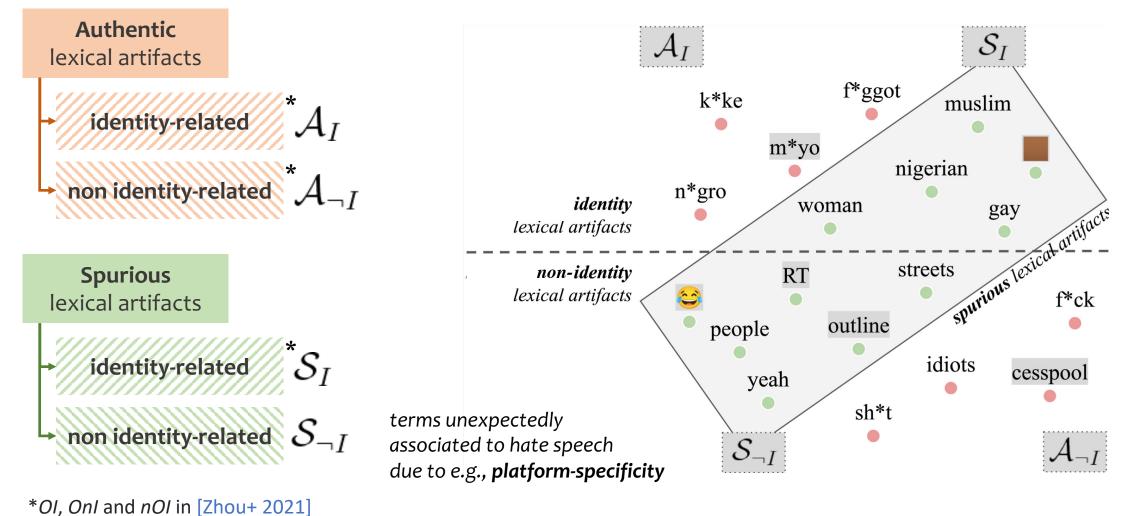
possibly offensive or stereotyping identity terms e.g., n*gro, f*ggot



possibly offensive swear words and profanities
e.g., f*ck, idiot

non-offensive terms describing identities e.g., Jews, women, gay

Characterization of lexical artifacts

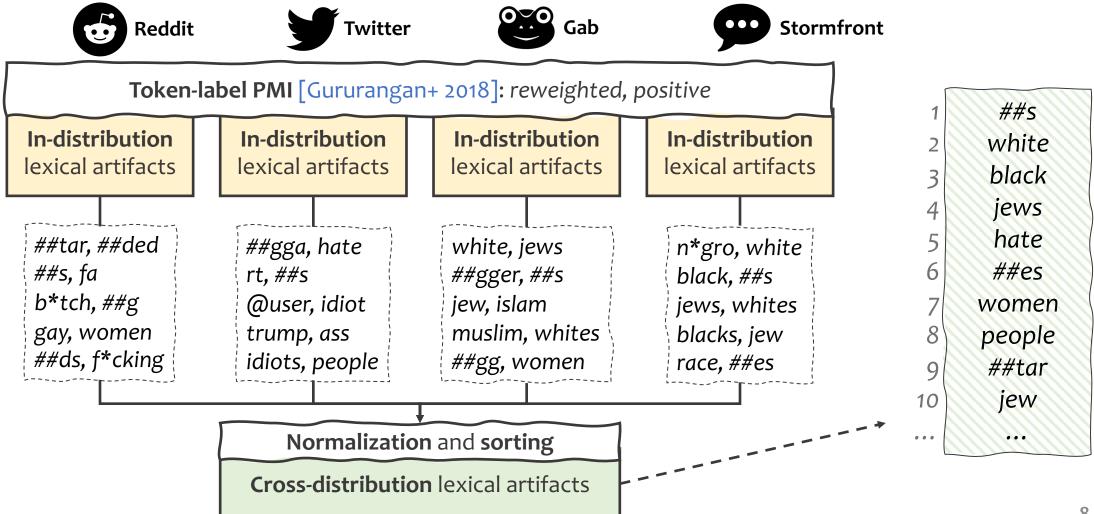


Datasets & unified preprocessing

Selection criteria: (*i*) different platforms, (*ii*) minimize topic bias, (*iii*) similar annotation guidelines

- ► Consistent preprocessing, cleaning, and label binarization
- ► **Deduplication** many duplicates for all datasets, reliability of bias studies

Computation of lexical artifacts



WordPiece tokenization consistent to end model's input ("##" is a subword marker)

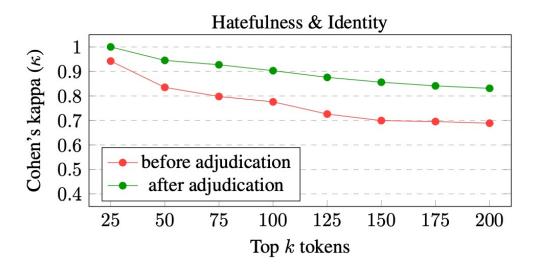
Annotation of lexical artifacts

Task: "Is the token potentially hateful and/or related to identities?"

- ► Top-k predictive tokens from cross-distribution rank (k=200)
- Tokens in context (randomly sampled posts from multiple platforms)
- 2 annotators (M&F; fluent in English; background in NLP and linguistics)

Inter-annotator agreement

- Before adjudication: κ = 0.6887
- After adjudication: $\kappa = 0.8311$



Experiments

Investigate the **impact of spurious lexical artifacts**

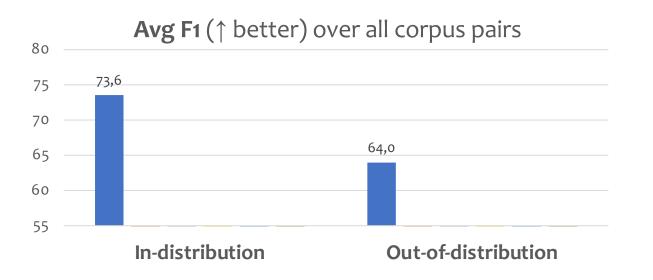
- ► ID/OOD experiments: training & testing on same/different platforms
- Evaluation: macro F1 (performance); FPR on subset w/ S_I (identity bias reduction)

Baselines and data-centric methods

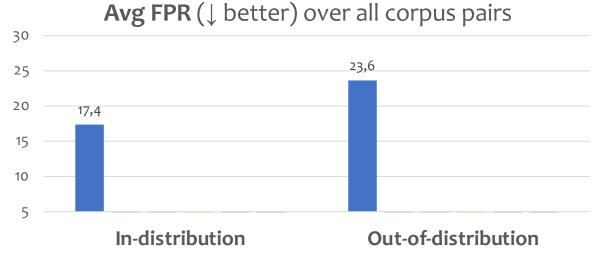
- 1. Vanilla: BERT-base, CE loss w/ balanced class weights
- 2. Filtering: train on 33% most ambiguous instances Vanilla's training dynamics
 - Promotes OOD generalization while preserving ID performance [Swayamdipta+ 2020]

Experiments (cont'd)

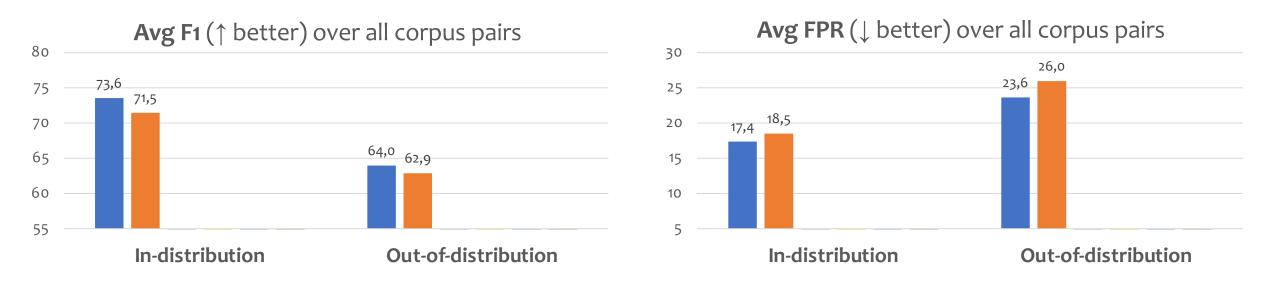
- 3. **Removal:** prior to fine-tuning, <u>remove</u> spurious lexical artifacts 3a. **Removal**(S_I): commonly employed "fairness" baseline [Kennedy+ 2020] 3b. **Removal**($S_{\neg I}$): removal variant for non identity-related lexical artifacts
- 4. **Masking:** prior to fine-tuning, <u>mask</u> spurious lexical artifacts <u>Hypothesis</u>: encourages model to blend all lexical artifacts to a single token representation that will never appear during testing
 - 4a. Masking(S_I): mask identity-related lexical artifacts
 - 4b. Masking $(S_{\neg I})$: mask non identity-related lexical artifacts



		I
Vanilla		1
		1
		1
		1
		1

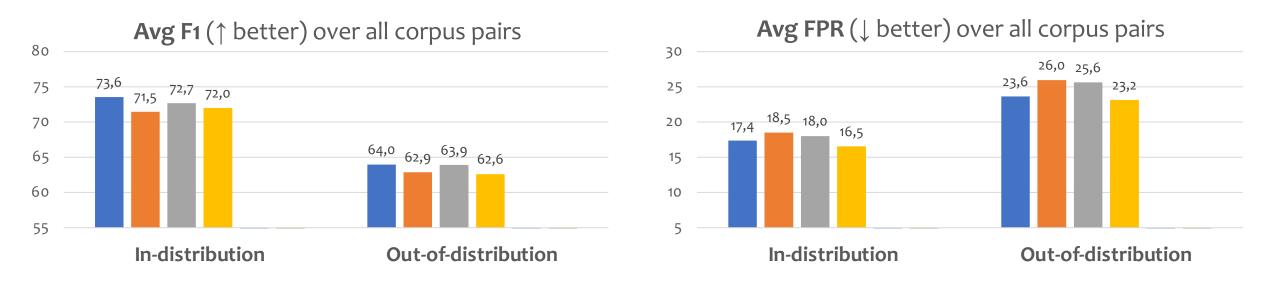


12



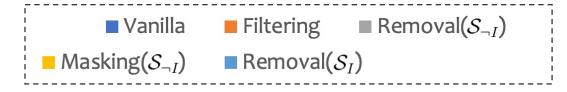
Filtering is not a one-size-fits-all solution

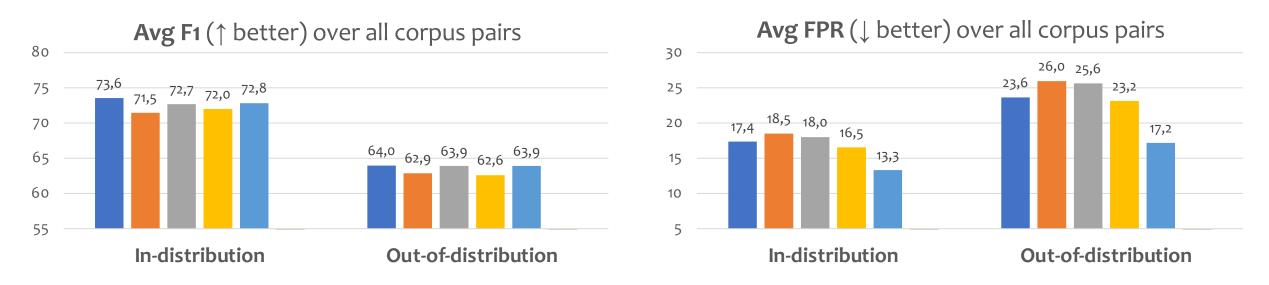
- Detrimental effect: hate speech detection requires targeted approaches
- ► Consistent w/ results on Twitter [Zhou+ 2021], confirmed across platforms



Operating on $\mathcal{S}_{\neg I}$ artifacts does not help

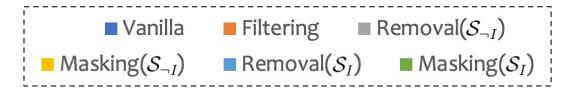
- ▶ Removal($S_{\neg I}$) worsen ID/OOD performance and identity bias reduction
- Masking($S_{\neg I}$) reduces identity bias only slightly
- Mixed results for both when looking closely at train/test pairs





Removal(S_I) mostly reduces identity bias

- ▶ Not on all pairs, so not as strong as it has been previously thought
- ► ID/OOD performance are only slightly reduced over the Vanilla baseline



Masking(S_I) <u>consistently</u> reduces identity bias

- Large improvement over all approaches, both ID/OOD, on all platforms
- Strong baseline for identity bias reduction in future research

F1 scores **reflect more realistically the performance** of a system that **do not rely on identity mentions** when making predictions!

Towards artifacts documentation

Inspired by data statements [Bender & Friedman 2018]

Lexical artifacts statement to document and early diagnose *lexical* biases when datasets are created/released

I. Top lexical artifacts

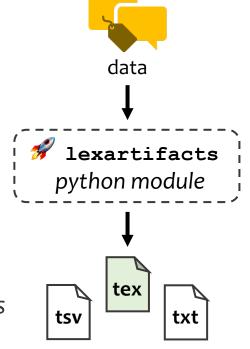
k>=10 most informative tokens to classes of interest w/ scores

II. Class definitions

Explicit definition of target class(es) for lexical artifacts

III. Methods and resources

Method (e.g., PMI), preprocessing, deduplication, and additional resources



Conclusions

Cross-platform study of lexical artifacts

► More attentive sampling is not enough: platforms do play a central role

Impact of spurious lexical artifacts

► Masking approach; robustness & identity bias are intertwined aspects

- Documentation is first step towards mitigation
 - ► Lexical artifacts statement for better understanding of lexical biases

Alan Ramponi

Sara Tonelli Fondazione Bruno Kessler, Italy

NAACL reproducibility badges

Resources

- Source code and documentation
- Lexical artifacts statement template
- Disaggregated annotated lexical artifacts
- Fine-tuned language models
- Iexartifacts package to ease documentation

https://github.com/dhfbk/ hate-speech-artifacts

